

PLANO DE ENSINO - 2025/1

IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS- AULA SEMANAIS	TOTAL DE HORAS- AULA SEMESTRAIS
EQA5415	Fenômenos de transferência I	05216	04	72

PROFESSOR MINISTRANTE	CONTATO	
Adriano da Silva	adriano.silva@ufsc.br	

III. PRÉ-REQUISITO(S)			
CÓDIGO	NOME DA DISCIPLINA		
EQA5318	Introdução aos Processos Químicos		
MTM5162	Cálculo B		
MTM3102	Cálculo 2-		

EQUIVALENTES	
ENQ1103	

CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA
ENGENHARIA QUÍMICA E ENGENHARIA DE ALIMENTOS

EMENTA

Estática dos fluidos. Balanços globais e diferenciais de massa, energia e quantidade de movimento. Análise dimensional e similaridade.

OBJETIVOS

GERAL:

O aluno, deverá ao final do curso, ser capaz de identificar cada termo das equações de conservação da massa e quantidade de movimento, dimensionar tubulações para transporte de fluidos e calcular espessura da camada limite hidrodinâmica laminar

ESPECÍFICOS:

- Compreender e deduzir a Lei de Pascal. Obter a variação da pressão em fluidos compressíveis e incompressíveis. Estudar os métodos e os instrumentos destinados às medidas de pressão nos fluidos.
- Estudar o comportamento dos fluidos. Distinguir os diversos tipos de fluídos e classificá-los.
- Obter o balanço global de massa, energia e quantidade de movimento. Deduzir o Teorema de Torricelli.
- Obter o balanço diferencial de massa, energia e quantidade de movimento para estudar o escoamento em dutos, entre placas planas, etc.
- Compreender o conceito de camada limite. Obter o perfil de velocidades a partir da solução de Blasius.
- Entender o conceito de escoamento turbulento. Obter o perfil universal de velocidade. Obter o coeficiente de atrito em tubos e em acidentes

CONTEÚDO PROGRAMÁTICO

- 1 Introdução
- 2 Estática dos fluidos: Lei de Pascal, variação da pressão com a posição em fluídos compressíveis e incompressíveis. Manometria.
- 3 Dinâmica dos fluidos. Definição de fluidos. Viscosidade de fluidos Newtonianos. Reologia dos fluidos. Escoamento laminar e turbulento.
- 4 Balanço global de massa.
- 5 Balanço global de energia. Balanço de energia mecânica. Teorema de Torricelli.
- 6 Balanço global de quantidade de movimento.
- 7 Balanço diferencial de massa.
- 8- Balanço diferencial de quantidade de movimento. Aplicações de Equação de Navier-Stokes.
- 9 Camada limite. Placa plana. Espessura da camada limite, Perfil de velocidade. Solução de Blasius.
- 10- Escoamento turbulento. Distribuição de velocidades no escoamento turbulento em duto circular liso. Perfil universal de velocidades. Coeficiente de atrito. Comprimento equivalente.

11- Análise dimensional.

Aula	Conteúdo	H/A
10/03	. Apresentação do Plano de Ensino	2
	- Agendamento das avaliações da aprendizagem ao longo da Disciplina	
12/03	- Introdução a mecânica dos Fluidos.	2
	- Sistemas de Unidades	
	- Conversão de unidades	
17/03	- Estática dos Fluídos: lei de Pascal, variação da pressão com a posição	2
	em fluídos compressíveis e incompressíveis. Manometria	
19/03	- Reologia dos fluidos.	2
	- Escoamento Laminar e Turbulento.	
	- Dinâmica dos fluídos	
	- Viscosidade de fluidos Newtonianos.	
24/03	- O Teorema de Transporte de Reynolds (TTR)	2
	- Relação entre derivada material e o TTR	
26/03	- Balanço Global de Massa	2
	- Princípio de conservação da massa	
	- Vazões de massa e volume	
	- Obtenção da equação de conservação da massa	
31/03	- Aplicação do balanço global de massa	2
01/04	- Balanço Global de Energia.	2
	- Energia mecânica e eficiência.	
03/04	- Equação de Bernoulli.	2
	- Aceleração de uma partícula	

	- Dedução da equação de Bernoulli	
	- Aplicações da equação de Bernoulli (Exercícios)	
08/04	- Escoamento laminar em tubos	2
	- Queda de pressão e perda de carga.	
10/04	- Escoamento Laminar em dutos não circulares	2
	- Escoamento turbulento em tubos	
15/04	- O diagrama de Moody e a equação de Colebrook	2
	- Equações explícitas para o fator de atrito de Darcy-Weisbach	
17/04	- Aula de Exercícios	3
22/04	- Aula de dúvidas	2
	- Redes de tubulação.	
	- Sistemas multitubos.	
24/04	- Exercícios	2
01/05	- Feriado	
06/05	- Primeira avaliação	2
08/05	- Introdução à análise diferencial do escoamento	2
	- A equação da continuidade	
13/05	- Conservação da quantidade de movimento	2
	- Dedução usando o volume de controle infinitesimal	
15/05	Feriado	
20/05	- Equação de Navier-Stokes para escoamento incompressível e isotérmico	2
	- Condições de contorno	
22/05	- Aplicação da Equação da continuidade e de Navier-Stokes	
2705	- Análise diferencial dos problemas de escoamento de fluidos	2
	- Hipótese simplificadoras	
29/05	- Soluções aproximadas da equação de Navier-Stokes	2
	- Escoamento em regime laminar no interior de dutos	
	- Equação de Hagen Poiseuille	
03/06	- Escoamento em regime laminar sobre placas planas paralelas	2
05/06	- Aula de dúvidas	2
10/06	- Segunda avaliação	3
12/06	- Aproximação de escoamento irrotacional.	2
17/06	- Introdução ao escoamento externo	2
	- Aproximação de escoamento externo	
19/06	Feriado	
24/06	- Coeficiente de arrasto de geometrias comuns	2
	- Escoamento sobre placas planas, cilindros e esferas	
	- Espessura da camada limite	
	- Análise de ordem de grandeza	
	- Solução exata de Blasius	
26/04	- Método de Von-Karman – Regime laminar	2
	- Equação do Coeficiente de atrito	
01/07	- Método de Von-Karman – Regime turbulento	2
	- Equação do Coeficiente de atrito	
03/07	- Análise dimensional	2
	- Teorema de Pi de Buckingham	

08/07	- Terceira avaliação	3
10/07	- Aula de revisão	2
15/07	- Avaliação de Exame Final	4
16/07	- Término do primeiro semestre letivo da graduação	

METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA AULAS SÍNCRONAS

As aulas síncronas serão ministradas nos horários da disciplina (terças-feiras e quintas-feiras a partir das 10h10min) empregando uma as ferramentas gratuitas de apoio ao ensino disponíveis.

Aulas síncronas serão expositivas com a utilização de material de apoio para apresentação dos conteúdos e/ou de softwares, de artigos científicos, além da aplicação do aprendizado baseado na resolução de problemas práticos.

O material utilizado nas aulas será disponibilizado aos estudantes no sistema moodle UFSC. É importante destacar que uma vez disponibilizada, a aula não poderá ser repassada a terceiros sem autorização prévia do docente.

AULAS ASSÍNCRONAS

As aulas assíncronas envolverão atividades de resolução de listas de exercícios e avaliações escritas e individuais. O Ambiente Virtual de Aprendizagem Moodle será utilizado para a entrega de todas as atividades assíncronas.

FREQUÊNCIA NA DISCIPLINA

As frequências na disciplina serão computadas através do registro de acesso online ao ambiente de aula.

METODOLOGIA DE AVALIAÇÃO

Serão realizadas duas avaliações escritas e individuais envolvendo os conteúdos ministrados e para o aluno que obtiver a $3.0 \le \text{Média} < 6.0 \text{ será aplicado um exame final.}$

As provas escritas visam avaliar:

A capacidade de adaptação do conteúdo teórico aos problemas tratados.

A capacidade de reconhecimento e conceitualização das equações tratadas.

A capacidade de solução analítica dos problemas propostos.

A capacidade de aplicação dos conteúdos a novos problemas

P1 = Prova 01 -**06/05/2025**

P2 = Prova 02 -**10/06/2025**

P2 = Prova 03 -**10/06/2025**

O Exame Final: Avaliação contemplando todo o conteúdo - 15/07/2025

Ao longo do semestre serão disponibilizadas Ambiente Virtual de Aprendizagem Moodle Listas de Exercícios que deverão ser resolvida individualmente (LEPs).

Média=(P1+P2+P3)/3 Se Média > 6,0 O acadêmico está Aprovado sem exame final.

Média_Final = (Média + Exame_Final)/2 > 6,0 - O acadêmico está Aprovado

NOVA AVALIAÇÃO

Para solicitar uma segunda avaliação ou revisão, o aluno deverá formalizar pedido na Secretaria do Departamento. Conforme Resolução nº 017/CUn/1997, Art. 74, o aluno, que por motivo de força maior e, plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, deverá pessoalmente ou por terceiros através de procuração pública, formalizar o pedido de segunda avaliação por meio de requerimento ao chefe de departamento, junto à Secretaria Integrada de Departamentos (SID) dentro do prazo de 3 dias úteis a contar da data da realização da avaliação. É necessário anexar ao pedido, a comprovação por documentos como, por exemplo: atestados médicos, de óbito, etc.

BIBLIOGRAFIA BÁSICA

Opções de livre acesso e disponibilização de material

Weblinks disponibilizados via Moodle.

Consulta de livros online na BU/UFSC: http://portal.bu.ufsc.br/a-biblioteca-universitaria-da-ufsc-oferece-acesso-a-livros-eletronicos-em-diversas-areas-do-conhecimento/

O conteúdo para o acompanhamento da disciplina estará disponível em materiais elaborados pelo Professor da disciplina e que serão disponibilizados aos estudantes no Ambiente Virtual de Aprendizagem Moodle.

Caso os estudantes tenham acesso à literatura, estes são os livros recomendados:

- ÇENGEL, Yunus A; CIMBALA, John M. Mecânica dos fluidos: fundamentos e aplicações. São Paulo: McGraw-Hill, 2007
- POTTER, Merle C. et al. Mecânica dos fluidos. São Paulo: Cengage Learning, c2004

BIBLIOGRAFIA COMPLEMENTAR

WHITE, Frank M. Mecânica dos fluidos. 6. ed. Porto Alegre: McGraw Hill, 2011

MUNSON, Bruce Roy; YOUNG, Donald F.; OKIISHI, T. H. Fundamentos da mecânica dos fluidos. São Paulo: Edgard Blucher, 2004.

FOX, Robert W.; MCDONALD, Alan T. Introdução à mecânica dos fluídos. 8. ed. Rio de Janeiro: LTC, c2014WELTY, James R. Fundamentals of momentum, heat, and mass transfer. 5th. ed. New York: John Wiley & Sons, 2008.

BIRD, R. Byron; STEWART, Warren E.; LIGHTFOOT, Edwin N. Fenômenos de transporte. 2. ed. Rio de Janeiro: LTC, c2004

BRUNETTI, Franco. Mecânica dos fluidos. 2. ed. rev. São Paulo: Pearson, 2008.

BENNETT, C.O. e Myers, J.E. - "Fenômenos de Transporte - Quantidade de Movimento, Calor e Massa" - Mc Graw-Hill, 1978.

SISSOM, L.E. e PITTS. D.R. - Fenômenos de Transporte, Guanabara Dois, 1979.

SHAMES, I.H. - Mecânica dos Fluidos - Vol. 1 e 2 Editora Edgard Blcher, 1973.

STREETER, Victor L.; WYLIE, E. Benjamin. Mecanica dos fluidos. 7. ed. São Paulo: McGraw-Hill International, c1982.

OBSERVAÇÕES

- As datas propostas, bem como a metodologia de ensino e as avaliações, poderão sofrer alteração em função da dinâmica da turma na disciplina ao longo do semestre.
- Alterações nas datas propostas para as avaliações, se necessárias, podem ser discutidas, no entanto, alterações nas datas previstas para as avaliações serão possíveis **apenas se TODOS(AS) os(as) alunos matriculados(as) concordarem por escrito ou por meio de registro digital no Ambiente**

NOTA IMPORTANTE - DIREITO AUTORAL

As aulas remotas estão protegidas pelo DIREITO AUTORAL.

Baixar, reproduzir, compartilhar, comunicar ao público, transcrever, transmitir, entre outros, o conteúdo das aulas ou de qualquer material didático pedagógico só é possível COM PRÉVIA AUTORIZAÇÃO. Respeite a privacidade e os direitos de imagem tanto dos docentes quanto dos colegas. Não compartilhe prints, fotos, etc., sem a permissão explícita de todos os participantes.

O(a) estudante que desrespeitar esta determinação estará sujeito(a) a sanções disciplinares previstas no Capítulo VIII, Seção I, da Resolução n.o 017/CUn/1997 e o estabelecido na Lei n.o 9.610, de 19 de fevereiro de 1998 (legislação sobre direitos autorais e de outras providências).

AVISO LEGAL: O professor não autoriza o uso de imagens, vídeos, etc. fora do âmbito do estudo na disciplina.

Assinatura do Professor	Assinatura do Chefe do Departamento