

PLANO DE ENSINO - 2022/2

IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA SEMANAIS	TOTAL DE HORAS-AULA SEMESTRAIS
EQA5415	Fenômenos de Transferência I	05215	04	72

PROFESSOR(ES) MINISTRANTE(S)	CONTATO
Bruno Francisco Oechsler	b.oechsler@ufsc.br

PRÉ-REQUISITO(S)		
CÓDIGO	NOME DA DISCIPLINA	
EQA5318 <i>e</i> MTM5162 <i>ou</i>	Introdução aos Processos Químicos e Cálculo B ou	
EQA5318 e MTM3102	Introdução aos Processos Químicos e Cálculo 2-	

EQUIVALENTES	
ENQ1415 ou ENQ5415	

CURSO(S) PARA O(S) QUAL(IS)	A DISCIPLINA É OFERECIDA
ENGENHARIA QUÍMICA	
ENGENHARIA DE ALIMENTOS	

EMENTA

Estática dos fluidos. Balanços globais e diferenciais de massa, energia e quantidade de movimento. Análise dimensional e similaridade.

OBJETIVOS

O estudante deverá ser capaz de identificar cada termo das equações de conservação de massa, quantidade de movimento e energia, bem como dimensionar tubulações para o transporte de fluidos e calcular a espessura da camada-limite hidrodinâmica laminar.

CONTEÚDO PROGRAMÁTICO

- 1 Introdução
- 2 Estática dos fluidos: Lei de Pascal, variação da pressão com a posição em fluídos compressíveis e incompressíveis. Manometria.
- 3 Dinâmica dos fluidos. Definição de fluidos. Viscosidade de fluidos Newtonianos. Reologia dos fluidos. Escoamento laminar e turbulento.
- 4 Balanço global de massa.
- 5 Balanço global de energia. Balanço de energia mecânica. Teorema de Torricelli.
- 6 Balanço global de quantidade de movimento.
- 7 Balanço diferencial de massa.
- 8 Balanço diferencial de quantidade de movimento. Aplicações de Equação de Navier-Stokes.

- 9 Camada limite. Placa plana. Espessura da camada limite, Perfil de velocidade. Solução de Blasius.
- 10- Escoamento turbulento. Distribuição de velocidades no escoamento turbulento em duto circular liso. Perfil universal de velocidades. Coeficiente de atrito. Comprimento equivalente.
- 11- Análise dimensional e modelos reduzidos.

Aula	Conteúdo
1 25/08 2h	Tópico 1 – Terminologia: Conceito de Fluido, Hipótese do Contínuo, Dimensões e Sistema de Unidades. Exercício sobre Conversão de Unidades. Propriedades Termodinâmicas dos Fluidos. Propriedades do Escoamento: Forças de Campo e de Superfície.
2 30/08 2h	Tópico 1 – Terminologia: Propriedades do Escoamento: Campos escalares, vetoriais e tensoriais. Analogia entre os Mecanismos de Transporte Molecular de Quantidade de Movimento, Calor e Massa de uma Espécie Química.
3 01/09 2h	Tópico 1 – Terminologia: Reologia dos Fluidos. Modelos reológicos de fluidos Não-Newtonianos. Tixotropia. Exercícios sobre Viscosímetros.
4 06/09 2h	Tópico 2 – Estática dos Fluidos: Campo escalar de pressão. Equação Básica da Estática dos Fluidos. Campo de Pressão em Líquidos e Gases.
5 08/09 2h	Tópico 2 – Estática dos Fluidos: Escalas de Pressão. Medidores de Pressão. Empuxo. Exercícios de Manometria.
6 13/09 2h	Tópico 3 – Cinemática dos Fluidos: Descrições Lagrangeana e Euleriana. Padrões e Visualização de Escoamentos: Linhas de corrente, de emissão e de trajetória.
7 15/09 2h	Tópico 3 – Cinemática dos Fluidos: Fluxo e Taxa de Transporte. Teorema de Transporte de Reynolds.
8 20/09 2h	Tópico 3 – Cinemática dos Fluidos: Balanços Integral e Diferencial de Conservação de Massa. Exercício de Aplicação.
9 22/09 2h	Tópico 4 – Dinâmica dos Fluidos Ideais: Escoamentos Viscosos e Ideais. Balanço Integral de Conservação de Energia.

10 27/09 2h	Tópico 4 – Dinâmica dos Fluidos Ideais: Equações de Bernoulli e Torricelli. Exercício de Medidores de Vazão.
11 29/09 2h	Tópico 4 – Dinâmica dos Fluidos Ideais: Balanço Integral de Conservação de Quantidade de Movimento. Exercício de Aplicação.
12 04/10 2h	Tópico 4 – Dinâmica dos Fluidos Ideais: Balanço Diferencial de Conservação de Quantidade de Movimento (Equação de Euler).
13 06/10 2h	Primeira Avaliação (Tópicos 1 a 4)
14 11/10 2h	Tópico 5 - Dinâmica dos Fluidos Viscosos: Balanço Diferencial de Quantidade de Movimento (Fluidos Viscosos).
15 13/10 2h	Tópico 5 - Dinâmica dos Fluidos Viscosos: Balanço Diferencial de Quantidade de Movimento (Equações de Cauchy e Navier-Stokes). Condições de Contorno
16 18/10 2h	SAEQA
17 20/10 2h	SAEQA
18 25/10 2h	Tópico 5 - Dinâmica dos Fluidos Viscosos: Exercícios de Aplicação das Equações de Navier-Stokes
19 27/10 2h	Tópico 5 - Dinâmica dos Fluidos Viscosos: Exercícios de Aplicação das Equações de Navier-Stokes
20 01/11 2h	Tópico 6 – Escoamento Viscoso Interno: Escoamento Laminar e Turbulento. Escoamento Turbulento: Médias Temporais, Equações de Transporte, Tensão Turbulenta de Reynolds, Perfil Universal de Velocidade.
21 03/11 2h	Tópico 6 – Escoamento Viscoso Interno: Equação da Energia no Escoamento em Tubos. Perda de Carga Distribuída. Fator de Atrito para Fluidos Newtonianos.
22 08/11 2h	Tópico 6 – Escoamento Viscoso Interno: Fator de Atrito para Fluidos Não-Newtonianos. Perda de Carga Localizada. Perda de Carga em Associação de Tubulações.

23 10/11 2h	Tópico 6 – Escoamento Viscoso Interno: Exemplos de aplicação para o cálculo de Perda de Carga e Potência em Sistemas de Tubulações com Bombas.
24 15/11 2h	Feriado: Proclamação da República
25 17/11 2h	Tópico 6 – Escoamento Viscoso Interno: Exemplos de aplicação para o cálculo de Perda de Carga e Potência em Sistemas de Tubulações com Bombas.
26 22/11 2h	Segunda Avaliação (Tópicos 5 e 6)
27 24/11 2h	Tópico 7 – Análise Dimensional: Adimensionalização das Equações de Dinâmica dos Fluidos. Significado físico dos grupos adimensionais relevantes.
28 29/11 2h	Tópico 7 – Análise Dimensional: Teorema de Buckingham e Método das Variáveis Repetidas (Rayleigh). Similaridade geométrica, cinemática e dinâmica.
29 01/12 2h	Tópico 8 – Escoamento Viscoso Externo: Escoamentos Bidimensionais Planos e Axissimétricos. Força de Arrasto e Sustentação. Arrasto de Atrito e Pressão. Escoamentos ao redor de Cilindros e Esferas.
30 06/12 2h	Tópico 8 – Escoamento Viscoso Externo: Teoria da Camada Limite: Análise Integral de von Kármán.
31 08/12 2h	Tópico 8 – Escoamento Viscoso Externo: Análise Integral de von Kármán (Camada-Limite Turbulenta). Coeficientes de Arrasto em Placas Planas. Equações da Camada-Limite Laminar. Análise de Ordem de Grandeza.
32 13/12 2h	Tópico 8 – Escoamento Viscoso Externo: Equações da Camada-Limite Laminar: Escoamentos Bidimensionais Planos. Função de Corrente. Solução de Blasius. Coeficientes de Arrasto em Placas Planas.
33 15/12 2h	Avaliação de Reposição
34 20/12 2h	Prova de Recuperação
35 23/12 2h	Entrega das notas finais

METODOLOGIA DE AVALIAÇÃO

Serão realizadas as seguintes avaliações:

- Entrega de Exercícios (NE): Peso 0,25
- Avaliações (NA1 e NA2): Peso 0,20 por Avaliação
- Projeto de Dimensionamento (NP): Peso 0,35
- 1) A média ponderada das avaliações será calculada como: MP = 0,25*NE + 0,20*(NA1+NA2) + 0,35*NP;
- 2) Se MP>5,5; o estudante está aprovado sem Prova de Recuperação (REC). Em caso de 3,0=<MP=<5,5 e frequência suficiente, o estudante terá direito à realização da REC. Se MP<3,0; o estudante está automaticamente reprovado;
- 3) A média no caso (2) será calculada como: MF = (MP + REC)/2.

Frequência mínima exigida: 75% (RESOLUÇÃO Nº 17/CUn/97, DE 30 DE SETEMBRO DE 1997.)

NOVA AVALIAÇÃO

Para solicitar uma segunda avaliação ou revisão, o aluno deverá formalizar pedido na **Secretaria do Departamento.**

Conforme Resolução nº 017/CUn/1997, Art. 74, o aluno, que por motivo de força maior e, plenamente justificado, deixar de realizar avaliações previstas no plano de ensino, deverá pessoalmente ou por terceiros através de procuração pública, formalizar o pedido de segunda avaliação por meio de requerimento ao chefe de departamento, junto à Secretaria Integrada de Departamentos (SID) dentro do prazo de 3 dias úteis a contar da data da realização da avaliação. É necessário anexar ao pedido, a comprovação por documentos como, por exemplo: atestados médicos, de óbito, etc.

Data da Avaliação de Reposição: 15/12/2022

BIBLIOGRAFIA BÁSICA

- Çengel, Y.A., Cimbala, J.M. Mecânica dos fluidos: Fundamentos e aplicações. 3. Ed. Porto Alegre: AMGH, 2015.
- 2. Welty, J.R., Rorrer, G.L., Foster, D.G. Fundamentos de transferência de momento, calor e massa. 6. Ed. Rio de Janeiro: LTC, 2017.
- 3. Bird, R.B., Stewart, W.E., Lightfoot, E.N. Fenômenos de transporte. 2. Ed. Rio de Janeiro: LTC, 2012.

BIBLIOGRAFIA COMPLEMENTAR

- Fox, R.W., McDonald, A.T.; Pritchard, P.J., Mitchell, J.W. Introdução à mecânica dos fluidos. 9. Ed. Rio de Janeiro: LTC, 2018.
- 2. White, F.M. Mecânica dos fluidos. 8. Ed. Porto Alegre: AMGH, 2018.
- 3. Hauke, G. An Introduction to Fluid Mechanics and Transport Phenomena, Springer, 2008.
- 4. Munson, Bruce Roy; YOUNG, Donald F.; OKIISHI, T. H. Fundamentos da mecânica dos fluidos. São Paulo: Edgard Blucher, 2004. 571 p.
- 5. Steffe, James F., Rheological Methods in Food Process Engineering, Second Edition, Freeman Press, 1996.

OBSERVAÇÕES		
Horário de atendimento do professor: Segunda-Feira ((9-11h), na sala	EQA E-209.

Horário de atendimento do professor: Segunda-Feira (9-11h), na sala EQA E-209.

A prova de recuperação será realizada com todo o conteúdo da disciplina.

A avaliação de reposição será realizada com todo o conteúdo da disciplina.

Assinatura do Professor

Assinatura do Chefe do Departamento