

PLANO DE ENSINO - 2022/1

IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA SEMANAIS	TOTAL DE HORAS- AULA SEMESTRAIS
EQA5562	Aplicação de Ferramentas Computacionais na Solução de Problemas de Eng. Química	09215 09216	03	54

PROFESSOR(ES) MINISTRANTE(S)	HORÁRIO DE ATENDIMENTO
Sergio Yesid Gómez Gonzalez	Segunda 8-12 : Sala E-301 - EQA
(sergio.gomez@ufsc.br)	

PRÉ-REQUISITO(S)			
CÓDIGO	NOME DA DISCIPLINA	•	
EQA5415 eh	Fenômenos de Transferência I eh	•	
INE5202 eh	Cálculo Numérico em Computadores eh		
MTM5164	Cálculo D		

EQUIVALENTES	
-	

CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA
ENGENHARIA QUÍMICA
ENGENHARIA DE ALIMENTOS

EMENTA

O papel dos métodos numéricos na engenharia química. Ferramentas computacionais disponíveis e sua utilização na área de engenharia. Resolução de modelos não lineares físico-químicos e biológicos empregando-se métodos numéricos e ferramentas computacionais

OBJETIVOS

GERAL:

O objetivo principal desta disciplina é fornecer métodos e ferramentas computacionais apropriadas aos estudantes dos cursos de Engenharia Química e de Engenharia de Alimentos para a solução de problemas típicos do dia-a-dia do Engenheiro. Vários estudos de caso serão desenvolvidos ao longo do curso, a modo de contextualizar as ferramentas, entender seu uso, e aplicar alguns métodos numéricos aplicados e sua implementação.

ESPECÍFICOS:

Ao final do semestre o aluno deverá ser capaz de:

- (a) Entender o papel e usar eficientemente ferramentas computacionais para resolver com sucesso problemas de ciência e engenharia.
- (b) Usar as ferramentas de busca de informação, captura de dados a partir de imagens, e digitação e estrutura de textos técnico-científicos, incluindo o uso de software de referencias.
- (c) Usar software tipo spread-sheets aprender a resolver equações, sistemas de equações e

- problemas básicos de otimização, e tarefas repetitivas simples, usando este tipo de software
- (d) Entender e formular soluções numéricas para problemas descritos por equações diferenciais ordinárias e parciais
- (e) Formular e escrever códigos estruturados usando Python.
- (f) Estruturar problemas usando software de sistemas integrados de processo usando DWSIM
- (g) Usar é conhecer o potencial de diferentes ferramentas de uso aberto aplicadas

CONTEÚDO PROGRAMÁTICO	H/A
 1 – Diversos programas disponíveis para obter dados, trabalhar em equipe, analisar imagens e comunicar e redigir textos e informação em ciência e engenharia (Image J, webplotdigitizer, zotero, overleaf, scopus entre outras ferramentas on-line). 	15
2 - Aplicação da ferramenta tipo spreadsheets na solução de problemas de Engenharia Química e Alimentos (Excel ou Google-sheets).	6
3 – Aplicação das ferramentas computacionais usando linguagem de programação na solução de problemas de Engenharia Química (Python).	18
4 – Aplicação de simuladores de processo na solução de problemas de Engenharia Química (DWSIM)	9
6- Outros tipos de software	6

Aula	Conteúdo			
1 22/04 3h	Introdução ao Curso			
2 29/04 3h	Bases de dados e análises bibliométricos com Scopus®, Zotero como gerenciador de referências, Obtenção de dados a partir de Figuras (webplotdigitizer).			
3 06/05 3h	LaTeX como ferramenta de edição de textos técnicos cientificos			
4 13/05 3h	Programa tipo Spreadsheets (Google Spreadsheets ou Excel): Funcionalidades básicas, regressões a partir de dados, solução de equações não lineais (atingir meta), otimização (solver).			
5 20/05 3h	Atividade Individual (Spreadsheets, Analise bibliométrica, Webplotdigitizer, LaTeX)			
6 27/05 3h	Python: Funcionalidades básicas da linguagem de programação, pseudocódigo, condicionais, loops			
7 03/06 3h	Scientific Python (Scipy): Arrays e matrizes (Numpy), Mátematica simbolica (Sympy), Graficar (Matplotlib) - Thermo-Python			

8 10/06 3h	Python + Métodos Númericos
9 17/06 3h	Atividade Individual (Python: Basics, Pacotes; Métodos Numéricos)
10 24/06 3h	Simuladores de processos I
11 01/07 3h	Simuladores de processos II
12 08/07 3h	Atividade Individual (Simuladores de Processos)
13 15/07 3h	Tutoriais - Tema Livre
14 22/07 3h	Tutoriais - Tema Livre
15 29/07 3h	Correção das avaliações e projeto e divulgação da nota final
16 05/08 3h	Inicio Recesso Escolar

METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

As aulas serão expositivas, com a utilização de quadro, recursos audiovisuais e de recursos computacionais:

Por favor trazer o próprio computador com os programas instalados para fazer as atividades. Em aula se indicara como instalar ou se fornecerão links-instruções. Dúvidas sobre o conteúdo exposto em sala de aula e das atividades e/ou poderão ser atendidas também pelo professor sendo possível combinar horário por e-mail

Atividade Individual: Como mostrado no plano, não teremos provas, mas sim atividades avaliativas, a diferença é que serão colocados todos os conteúdos e marcação é destinada a resolver dúvidas com o professor da atividade individual de fechamento e para ser entregue via moodle antes da seguinte aula conforme será colocado no dead-line do link. O calendário que marca fechamento da atividade, se faram os esclarecimentos necessários que o aluno considere pertinente para a execução da atividade. As atividades deve ser enviadas através do moodle, bem escrito e em formato de relatório anexando os scripts ou arquivos gerados para obter a solução, cada atividade terá o peso de 3 atividades convencionais cada.

Tema livre: Desde o inicio do semestre cada estudante vai selecionar uma ferramenta computacional não usada/explicada dentro do plano de ensino para explicar aos colegas a utilidade, apresentando na forma de um tutorial básico na forma de um vídeo tutorial e atividade realizada no final do semestre. O dia do trabalho, presentara o vídeo e se fará uma rodada de máx 5 mins de perguntas e será cada um avaliado pelos colegas.

	 \sim	~ı /	\sim		A \ / A I		\sim
IVЛ	 		11-14	1) —	$\Delta V \Delta I$	14	ιιΔι
	 \smile	\sim \sim	DGIA	$\boldsymbol{\nu}$	\sim 1 \sim 1	-1/	\mathbf{v}

Avaliação da aprendizagem será realizada atraves das atividades avaliativas em aula e individuais e as feitas em aula com um peso de 80%, e uma atividade descrevendo o uso de um software livre da escolha do aluno que será avaliado com apresentação, o video e as atividades propostas. A média final será calculada como segue:

Média = $(\sum ((\text{nota atividades Individuais})*3+atividades)/(\#Atividades individuais *3+#Atividades)×0.8 + (Tema Livre) × 0.2$

A nota de atividades será calculada por média aritmética simples de todas as atividades feitas, como mostrado anteriormente. Será considerado aprovado o estudante que obtiver média maior ou igual a 6,0.

BIBLIOGRAFIA BÁSICA

As notas de aula, apresentações, slides, vídeos, referências, entre outros, será disponibilizado pelo professor posteriormente, garantindo o acesso do estudante a material adequado.

BIBLIOGRAFIA COMPLEMENTAR				
-				
Assinatura do Professor	Assinatura do Chefe do			
	Departamento			