

PLANO DE ENSINO - 2021/2

IDENTIFI	CAÇÃO DA DISCIPLINA	\ :		
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA SEMANAIS	TOTAL DE HORAS-AULA SEMESTRAIS
EQA5409	Cálculo de Reatores II	07216	04	72

PROFESSOR(ES) MINISTRANTE(S)	CONTATO
Natan Padoin	natan.padoin@ufsc.br

PRÉ-REQUISITO(S)		
CÓDIGO		NOME DA DISCIPLINA
EQA5408	Cálculo de Reatores I	

EQUIVALENTES	
ENQ1409 ou ENQ5409	

CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA ENGENHARIA QUÍMICA

EMENTA

Reatores multifásicos. Catálise heterogênea. Reatores catalíticos heterogêneos. Reatores fluido-fluido. Reatores sólido-fluido. Análise de reatores.

OBJETIVOS

O cálculo de um reator químico é de responsabilidade do engenheiro químico. Só ele é o profissional devidamente habilitado para equacionar esse tipo de problema. Essa habilidade deverá ser adquirida ao longo desse curso.

Reatores químicos não estão presentes só em grandes fábricas, refinarias e petroquímicas. Alguns estão bem próximos de nós, em nosso dia a dia. Por exemplo, os conversores catalíticos automotivos, encontrados na parte inferior do chassi, os próprios motores de combustão interna a álcool, gasolina, gás natural ou diesel; cada um de seus equipamentos eletrônicos, incluindo seu telefone celular, relógio digital e computador, em sua casa ou no seu carro, carrega elementos semicondutores desenhados de acordo com os mesmos princípios de adsorção química que governam as reações heterogêneas (Processos CVD); cada uma das ~75 trilhões de células de seu corpo é um complexo reator (bio)químico onde ocorrem centenas ou milhares de reações enzimáticas (catalíticas) simultaneamente.

Novos conhecimentos e ferramentas de engenharia nos permitem tratar um grande número dessas reações, auxiliando-nos no projeto de novos produtos biotecnológicos e novas propriedades celulares. Mas nada mais excitante para um engenheiro químico do que se deparar com um pequeno "monstro" de aço de vinte metros de altura e cinco de diâmetro, capaz de produzir milhares de toneladas por ano de um produto químico valioso e de interesse comercial. A maior parte desses gigantes opera em refinarias e indústrias petroquímicas de grande porte, e são reatores catalíticos heterogêneos, ou seja, com catalisadores sólidos a bordo que podem custar mais de um milhão de dólares por carga, convertendo em geral matérias-primas orgânicas, agregando valor econômico aos produtos industrializados.

Esses – os reatores heterogêneos – são os nossos principais alvos neste curso de reatores químicos. Ao longo do semestre você aprenderá os princípios da cinética de processos catalíticos heterogêneos, compreenderá a desativação de catalisadores e estudará estratégias para a mitigação desse problema, analisará os efeitos difusivos em reatores com partículas porosas, estudará os princípios de reatores heterogêneos não-catalíticos para reações gás-sólido, terá contato com ferramentas computacionais aplicadas ao projeto e análise de reatores com partículas porosas e verá inúmeras aplicações (associadas aos fundamentos) de reatores multifásicos na indústria de processos. Aproveite!

CONTEÚDO PROGRAMÁTICO

- Introdução aos reatores multifásicos.
- Introdução à catálise heterogênea. Efeitos difusivos em reatores com partículas porosas. Fator de efetividade. Desativação de catalisadores.
- Reatores não-catalíticos para reações gás-sólido. Modelo do núcleo em encolhimento.
- Reatores multifuncionais. Torres de absorção, destilação e extração com reação.
- Reator de leito fluidizado. Reator de leito de lama (*slurry bed reactor*). Reator de leito gotejante (*trickle bed reactor*).
- Intensificação de processos catalíticos heterogêneos.
- Reatores catalíticos em aplicações ambientais.

Aula	Conteúdo
25/10/21	Discussão do plano de ensino. Introdução à catálise e reatores catalíticos.
27/10/21	Cinética de reações catalíticas heterogêneas.
01/11/21	Dia não letivo.
03/11/21	Cinética de reações catalíticas heterogêneas.
08/11/21	Análise de dados e projeto preliminar de reator catalítico heterogêneo.
10/11/21	Desativação catalítica.
15/11/21	Dia não letivo.
17/11/21	Estratégias para operação de reatores catalíticos em desativação.
22/11/21	Estratégias para operação de reatores catalíticos em desativação.
24/11/21	Primeira avaliação (A1).
29/11/21	Efeito da limitação à transferência de massa externa em catálise heterogênea.
01/12/21	Efeito da limitação à transferência de massa externa em catálise heterogênea.
06/12/21	Efeito da limitação à transferência de massa interna em catálise heterogênea.
08/12/21	Efeito da limitação à transferência de massa interna em catálise heterogênea.
13/12/21	Fator de efetividade global e reação com transferência de massa em leito fixo.
15/12/21	Critérios de Weisz-Prater e de Mears.
02/02/22	Reatores de leito fixo com limitações ao transporte de massa.
07/02/22	Modelo do núcleo em encolhimento.
09/02/22	Modelo do núcleo em encolhimento.
14/02/22	Segunda avaliação (A2).
16/02/22	Seminário 1 (S1).
21/02/22	Seminário 1 (S1).
23/02/22	Seminário 1 (S1).
28/02/22	Análise de reatores catalíticos heterogêneos. Simulação computacional. Aula
26/02/22	assíncrona (ponto facultativo).
02/03/22	Análise de reatores catalíticos heterogêneos. Simulação computacional.
07/03/22	Análise de reatores catalíticos heterogêneos. Simulação computacional.
09/03/22	Análise de reatores catalíticos heterogêneos. Simulação computacional.
14/03/22	Seminário 2 (S2).
16/03/22	Seminário 2 (S2).

21/03/22	Seminário 2 (S2).
23/03/22	Avaliação de recuperação.

METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

• As aulas serão ministradas na modalidade síncrona e/ou assíncrona utilizando a ferramenta Google Meet. Todas as aulas serão ministradas no link:

https://meet.google.com/fzh-xixu-tyu

- O ambiente virtual de ensino e aprendizagem (AVEA) Moodle (www.moodle.ufsc.br) consistirá na base de dados da disciplina, na plataforma para realização de atividades assíncronas (submissão de avaliações/atividades) e em ferramenta de comunicação entre o professor e os estudantes.
- As datas das avaliações (com exceção dos seminários) serão discutidas ao longo do semestre.
- Todas as aulas, síncronas ou assíncronas, serão gravadas e disponibilizadas no ambiente Moodle, juntamente com material de apoio (anotações, códigos, etc.).
- A disciplina poderá contar com participação(ões) de profissional(is) da academia ou da indústria, com notória experiência na área de Catálise e Reatores Heterogêneos, para a ministração de palestra(s) virtual(is) em data(s) a ser(em) divulgada(s) em tempo hábil.
- Os atendimentos (professor ou estagiário docente) ocorrerão sempre no seguinte link:

https://meet.google.com/tvp-naja-ido

Importante: Enviar e-mail para agendar atendimento (data e horário), com antecedência mínima de 24 h.

NOTA IMPORTANTE - DIREITO AUTORAL

As aulas remotas estão protegidas pelo **DIREITO AUTORAL**. Baixar, reproduzir, compartilhar, comunicar ao público, transcrever, transmitir, entre outros, o conteúdo das aulas ou de qualquer material didático pedagógico só é possível **COM PRÉVIA AUTORIZAÇÃO**.

Respeite a privacidade e os direitos de imagem tanto dos docentes quanto dos colegas. Não compartilhe prints, fotos, etc., sem a permissão explícita de todos os participantes. O(a) estudante que desrespeitar esta determinação estará sujeito(a) a sanções disciplinares previstas no Capítulo VIII, Seção I, da Resolução 017/CUn/1997 e o estabelecido na Lei no 9.610, de 19 de fevereiro de 1998 (legislação sobre direitos autorais e dá outras providências).

METODOLOGIA DE AVALIAÇÃO

A análise da aprendizagem será realizada por meio de duas avaliações (A1 e A2) assíncronas individuais distribuídas ao longo do semestre letivo utilizando o AVEA Moodle.

Além disso, dois seminários em equipe comporão a avaliação do desempenho (S1 e S2). Em cada um dos seminários, relatórios deverão ser elaborados de acordo com as normas disponíveis em:

https://portal.bu.ufsc.br/normalizacao/.

Embora apresentados em conjunto (ao vivo ou por meio de vídeo previamente gravado), os seminários serão avaliados individualmente. Aos relatórios, entretanto, serão atribuídas notas únicas para a equipe. As notas serão atribuídas a S1 e S2 em uma escala de zero a dez, considerando no cômputo as apresentações e os relatórios referentes a cada

seminário.

• O seminário 1 (S1) será pautado nos seguintes tópicos:

Reatores multifuncionais: torres de absorção, destilação e extração com reação; reatores de membranas. Reações catalíticas (oxidação seletiva, hidrogenação seletiva, conversão de metano).

• O seminário 2 (S2) será organizado com base nos seguintes tópicos:

Reator de leito fluidizado. Reator de leito de lama (*slurry bed reactor*). Reator de leito gotejante (*trickle bed reactor*). Reatores catalíticos estruturados. Intensificação de processos catalíticos em micro e mesorreatores. Reatores catalíticos em aplicações ambientais.

As equipes deverão ser formadas até a <u>segunda semana</u> de aulas. A distribuição dos tópicos por equipe em cada um dos seminários se dará por meio de <u>sorteio</u>.

Em cada um dos seminários e relatórios, deve-se atentar aos seguintes elementos norteadores: estrutura e operação dos equipamentos, princípios físicos, equações de projeto, aplicações; disponibilizar imagens e/ou vídeos.

- A nota final (NF) será assim distribuída:
 - o Avaliações assíncronas individuais (média aritmética simples de A1 e A2): 50%.
 - o Seminários (média aritmética simples de S1 e S2): **50%**.

Se NF \geq 6,0, o(a) aluno(a) estará aprovado(a). Se 3,0 \geq NF > 6,0, será oferecida a possibilidade de realizar uma avaliação de recuperação (REC). Nesse caso, a nota final corrigida (NF*) será calculada como segue:

 $NF^* = (NF + REC) / 2$. Será considerado(a) aprovado(a) o(a) aluno(a) que obtiver $NF^* \ge 6.0$.

BIBLIOGRAFIA BÁSICA

Notas de aula, apresentações de slides, referências, entre outros, disponibilizados pelo professor no AVEA Moodle.

BIBLIOGRAFIA COMPLEMENTAR

Sites para consulta de artigos científicos. Sites indicados pelo professor.

OBSERVAÇÕES

Alterações nas datas propostas para os conteúdos discriminados podem ser necessárias de modo a otimizar a aprendizagem. As eventuais alterações serão discutidas entre o professor e os estudantes em aulas síncronas e/ou por meio do AVEA Moodle.

Assinatura do Chefe do Departamento