

PLANO DE ENSINO - 2021/2

IDENTIFICAÇ	ÃO DA DISCIPLINA:					
CÓDIGO	NOME DA	TURMA	Nº DE H SEMANAIS	HORAS-AULA	TOTAL HORAS-AULA	DE
	DISCIPLINA		TEÓRICAS	PRÁTICAS	SEMESTRAIS	
EQA5226	Fermentações	T07215	3	0	54	
EQA3220	Industriais	T07216	3	U	34	

PROFESSOR((ES)	MINISTRANTE(S)

Jaciane Lutz lenczak

PRÉ-REQUI	SITO(S)
CÓDIGO	NOME DA DISCIPLINA

CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA

Curso de Graduação em Engenharia Química

Curso de Graduação em Engenharia de Alimentos

EMENTA

Introdução. Processos fermentativos. Produção de biomassa. Produção de alcoóis. Produção de solventes. Produção de ácidos. Produção de polissacarídeos. Produção de antibióticos. Produção de vitaminas. Produção de enzimas. Transformações de esteroides.

OBJETIVOS

GERAL:

Ao final do curso o aluno deverá ser capaz de utilizar os conceitos de processos fermentativos para projetar e otimizar tais processos.

ESPECÍFICOS:

- 1.Ser capaz de descrever um processo fermentativo industrial.
- 2.Ter noções de microbiologia, bioquímica, engenharia genética e análises ômicas voltadas para a fermentação industrial.
- 3.Conhecer os aspectos fundamentais para o desenho de um processo de fermentação industrial.
- 4. Ser capaz de trabalhar com processos de fermentação industrial.

CONTEÚDO PROGRAMÁTICO

- 1. Introdução à processos fermentativos industriais
- 2. Fundamentos de microbiologia, biologia e bioquímica
- 3. Fundamentos de processos fermentativos industriais
- Fundamentos de engenharia genética para fermentações industriais
- 5. Estudos de caso para diferentes processos fermentativos
- 6. Avaliações e seminários

CRO	NOGRAM	Α		
Aula	Data	Conteúdo: Atividade Síncrona (S) e Assíncrona (A)		
1	26/10/21	Apresentação da disciplina (Fundamentos de microbiologia, biologia, bioquímica e processos fermentativos industriais) (S)		
2	02/11/21	Dia não letivo		
3	09/11/21	Biocombustíveis (S)		
4	16/11/21	Exercício: Biocombustíveis (A)		
5	23/11/21	Produção de bebidas e alimentos (S)		
6	30/11/21	Exercícios: Produção de bebidas e alimentos fermentadas (A)		
7	07/12/21	Produção de exapolissacarídeos e biopolímeros (S)		
8	14/12/21	Exercício: Produção de exapolissacarídeos e biopolímeros (A)		
	RECESSO ESCOLAR DO SEGUNDO SEMESTRE LETIVO DE 2021			
9	01/02/22	Produção de cerveja (S)		
10	08/12/22	Produção de vacinas, kits diagnóstico e anticorpos monoclonais (S)		
11	15/02/22	Exercícios: Produção de vacinas, kits diagnóstico e anticorpos monoclonais (A)		
12	22/02/22	Produção de biopigmentos (S)		
14	01/03/22	Dia não letivo		
15	08/12/22	Produção de lipídeos microbianos e ácidos orgânicos (S)		
16	15/02/22	Apresentação seminários (A)		
17	22/02/22	Avaliação de recuperação (S)		

METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

- 1. **sistema de comunicação:** A comunicação com os alunos será pelo ambiente virtual de ensino e aprendizagem do Moodle.
- 2. **aulas síncronas**: se referem aos encontros entre docente, tutores e discentes através de ambientes virtuais. Será composta de aula expositiva e dialogada usando o modelo de projeção de slides. Além disso, ocorrerá de maneira simultânea a resolução de exercícios e discussão de artigos. As aulas síncronas serão realizadas pelo Google Meet e/ou Zoom (o link será previamente encaminhado pelo Moodle). Na primeira semana de aula faremos testes de grupo para ambientação dos recursos tecnológicos a serem empregados na disciplina.
- 3. **atividades assíncronas:** se referem a preparação para as atividades síncronas e realização de exercícios. O material para estas aulas será disponibilizado pelo Moodle.
- 4. **modelo de tutoria a distância:** para as atividades assíncronas o professor será o tutor, mas terá o apoio dos estagiários de docência e dos tutores. Os discentes que tiverem problemas de acesso durante as atividades síncronas devem informar o docente através do Moodle, para encaminhamento de material referente à aula não acompanhada.
- 5. **identificação do controle de frequência das atividades**: Presença nas atividades síncronas será computada pelo acesso online.

Mudanças na metodologia poderão ocorrer ao longo do semestre com base no resultado das avaliações metodológicas que serão realizadas e em possíveis alterações, definidas pela UFSC, nas atividades remotas.

Tutoria e Estágio Docência (suporte didático para resolução de exercícios e técnico para a apresentação de seminários):

Vinícius Delmonego: vinicius ruan.d@gmail.com

METODOLOGIA DE AVALIAÇÃO

- 1) Listas de exercício 50 % da nota
- 2) Seminário em equipe 50 % da nota
- 3) Recuperação: prova oral

REQUISITOS PARA APROVAÇÃO:

A média final (NMF):

Se NMF >= 5,75 - Aprovado sem REC.

Se NMF < 5,75 - REC (R)

Se NMF< 3,00 - Reprovado

1) REC (Prova de Recuperação)

Se (NMF + R)/2 >= 5,75 - Aprovado

Se (NMF + R)/2 < 5.75 - Reprovado

Frequência mínima exigida: 75% (RESOLUÇÃO Nº 17/CUn/97, DE 30 DE SETEMBRO DE 1997.)

BIBLIOGRAFIA BÁSICA

As notas de aula, apresentações, slides, vídeos, referências, entre outros, serão disponibilizados pelo professor durante o semestre na plataforma Moodle, garantindo o acesso do estudante a material adequado.

Wishart, D. (2008) Metabolomics: application to food science and nutritions research. Trends in Food Science & Tecnology, v. 19,p. 482-493.

Valdes, A. ET AL., (2013) Recent transcriptomics advances and emerging applications in food science. Trends in Analytical Chemistry, v. 52, p. 142-154.

Marzzoco, A. & Bayardo, B.T. (1999). Bioquímica básica. Segunda edição. Editora Guanabara Koogan.

OKARA, N. (2007). Modern Industrial Microbiology and Biotechnology, Ed. Science Publishers.

Han, J.Z. & Wang, Y. B (2008). Proteomics: present and future in food science and technology. Trends in Food Science & Technology, v. 19,p. 26-30.

Aquarone, E. ET AL., (2001). Biotecnologia Industrial - Vol. 1, 2,3 e 4. Editora Blücher.

OBSERV	ACC)FS
ODSLIV	ハしし	JLJ

Horário das aulas: terças-feiras das 13:30 as 16:20				
Assinatura do Professor	Assinatura	do	Chefe	do

Departamento		