

PLANO DE ENSINO - 2021/1

IDENTIFICAÇÃO DA DISCIPLINA:				
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA SEMANAIS	TOTAL DE HORAS- AULA SEMESTRAIS
EQA5342	Termodinâmica para Eng. Química II	06215	04	72

PROFESSOR(ES) MINISTRANTE(S)	CONTATO
Marcelo Lanza	m.lanza@ufsc.br
Estagiário Docente: Clóvis A. Balbinot Filho	clovisbalbinot94@gmail.com

PRÉ-REQUISITO(S)			
CÓDIGO	NOME DA DISCIPLINA		
EQA5341	Termodinâmica para Eng. Química I		

EQUIVALENTES			

CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA ENGENHARIA QUÍMICA E ENGENHARIA DE ALIMENTOS

EMENTA

Propriedades termodinâmicas das misturas homogêneas. Propriedade molar parcial. Propriedade em excesso. Coeficiente de atividade. Equilíbrio de fase. Coeficientes de atividades obtidos experimentalmente. Equilíbrio químico. Equilíbrio multireacional.

OBJETIVOS

Desenvolver no aluno a capacidade de avaliar, equacionar e calcular o equilíbrio de fases e o equilíbrio químico

Objetivos específicos:

- a) Colocar o equilíbrio de fases segundo os Postulados da termodinâmica, vistos na disciplina anterior;
- b) Descrever qualitativamente soluções, compreender os tipos de interações interpartículas e suas conseqüências no cálculo de propriedades termodinâmicas;
- c) Efetuar a modelagem da fase gasosa utilizando correlações e equações de estado; emprego da função geradora residual de Gibbs e sua função auxiliar associada (coeficiente de fugacidade);
- d) Efetuar a modelagem da fase líquida através da função geradora em excesso de Gibbs e sua função auxiliar associada (coeficiente de atividade);
- e) Cálculo do equilíbrio de fases usando as diversas notações de isofugacidade; Cálculo do equilíbrio químico.

CONTEÚDO PROGRAMÁTICO

- 1. Equilíbrio de fases
 - a) Colocação do problema segundo os Postulados da Termodinâmica
 - b) Verificação das variáveis de Cálculo
 - c) Dificuldades de avaliação do Equilíbrio através do Potencial Químico
- 2) Descrição Qualitativa de Soluções
 - a) Interações Moleculares
 - b) Soluções ideais como Casos Particulares de Soluções Reais
- 3) Propriedades Parciais Molares
 - a) Definição de Propriedade Parcial Molar
 - b) Cálculo de Propriedades Termodinâmicas em Soluções Reais e Ideais

- 4) Descrição e Modelagem da Fase Gasosa
 - a) Comportamento da Fase Gasosa-Relações PVT.
 - b) Equações de Estado Semi-Empírica.
 - c) Equação Virial.
 - d) Correlação para o 2º Coeficiente do Virial.
 - e) Teoria dos Estados Correspondentes.
 - f) Correlação Generalizada.
- 5) Definição de Funções Auxiliares
 - a) Fugacidade e Coeficiente de Fugacidade.
 - b) Cálculo do Coeficiente de Fugacidade usando Equações de Estado e correlações generalizadas.
- 6) Descrição e Modelagem da Fase Líquida
 - a) Definição de Funções em Excesso como Funções Geradoras.
 - b) Atividade e Coeficiente de Atividade.
 - c) Estados Padrões
 - d) Modelos para o coeficiente de atividade.
 - e) Métodos de Contribuição de Grupos.
- 7) Cálculo do Equilíbrio de Fases.
 - a) Equilíbrio Líquido-Vapor à Baixas Pressões.
 - b) Avaliação da modelagem das Fases vapor e líquida na Predição do Equilíbrio e Comparação com dados Experimentais.
 - c) Estimação de Parâmetros de Equações de Estado e de Coeficientes de Atividade.
 - d) Equilíbrio Líquido-Líquido. Predição e Estimação de Parâmetros.
- 8) Equilíbrio Químico
 - a) Calor Padrão de Reação.
 - b) Coordenadas de Reação.
 - c) Cálculo do Equilíbrio Químico

Aula	Conteúdo: Atividades Síncronas (S) e Assíncronas (A)	
15/06	Apresentação da Disciplina (S) e Aula 1 – Conceitos e Definições (A)	S/A
17/06	Aula 2 – Comportamento PVT	S
22/06	Aula 3 – Equações de Estado – Parte 1	S
24/06	Aula 3 – Equações de Estado – Parte 2	S
29/06	Aula 4 – Equação de Estado Cúbica Genérica	Α
01/07	Aula 5 – Correlações Generalizadas	Α
06/07	Aula 6 – Problemas e Tarefa 1: EdEs e Correlações	Α
08/07	Aula 7 – ELV: Introdução	S
13/07	Aula 8 – Lei de Raoult e Tarefa 2: Gráficos_Lei de Raoult	S
15/07	Apresentação do Problema Individual	S
20/07	Aula 9 – Lei de Henry e Raoult Modificada	Α
22/07	Aula 10 - Problemas e Tarefa 3: Leis de Raoult e Henry	Α
27/07	Aula 11 - Coeficientes de Separação, Cálculo Flash e Azeotropia	S
29/07	Aula 12 - Problemas e Tarefa 4: Flash e Azeotropia	Α
03/08	Aula 13 - Programas para Cálculo de Propriedades e Equilíbrio - Parte 1	S
05/08	Aula 13 - Programas para Cálculo de Propriedades e Equilíbrio - Parte 2	S
10/08	Aula 14 – Aula Prática: Dados Experimentais de ELV e Tarefa 5: Dados ELV	A
12/08	Suporte para Resolução do Problema Individual	S
17/08	Aula 15a – PPM e Volume Parcial Molar	Α
19/08	Aula 15b – Determinação Experimental de VPM e Tarefa 6: VPM	Α
24/08	Aula 16 – Fugacidade e Coeficiente de Fugacidade	S
26/08	Aula 17 – Problemas e Tarefa 7: Fugacidade	Α
31/08	Entrega do Problema Individual	S/A

02/09	Aula 18 - Propriedades em Excesso e Coeficiente de Atividade - Parte 1	S
07/09	Feriado: Dia da Independência	-
09/09	Aula 18 - Propriedades em Excesso e Coeficiente de Atividade - Parte 2	S
14/09	Aula 19 - Problemas e Tarefa 8: Prop. Excesso e Gama	Α
16/09	Aula 20 – Cálculos de Equilíbrio	S
21/09	Aula 21 – Equilíbrio Líquido-Líquido (ELL) e Sólido-Líquido (ESL)	Α
23/09	Apresentação dos Seminários	S
28/09	Apresentação dos Seminários	S
30/09	REC	S

METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Metodologia (atividades síncronas e assíncronas): Consiste na especificação do conjunto das ações a serem desenvolvidas pelo professor e pelos alunos para definir a forma de desenvolvimento do conteúdo programático. A Metodologia empregada deverá estimular a participação efetiva dos alunos no desenvolvimento da disciplina, devendo ser apresentada pormenorizadamente, ou descrita genericamente, a critério do professor.

- As atividades Síncronas se referem aos encontros entre docente, tutores e discentes através dos seguintes ambientes virtuais, RNP e Google Meet. Os endereços dos encontros virtuais serão encaminhados pelo Moodle da disciplina;
- As atividades Assíncronas se referem a preparação para as atividades síncronas e realização de exercícios. O material para estas aulas será encaminhado pelo Moodle. Nas aulas assíncronas reservadas para realização de exercícios, os monitores/tutores/estagiários de docência estarão no ambiente virtual (endereço será encaminhado pelo Moodle) para esclarecimento de dúvidas e suporte à solução de exercícios.
- Será criado um grupo de Whatsapp (docente, tutores e discentes) para dúvidas operacionais da disciplina;
- A frequência será observada nas atividades síncronas pelo registro do acesso online.
- Os discentes que tiverem problemas de acesso durante as atividades síncronas devem informar o docente através do Moodle ou Whatsapp (grupo da disciplina), para encaminhamento de material referente à aula não acompanhada.
- Na primeira semana de aula faremos testes de grupo para ambientação dos recursos tecnológicos a serem empregados na disciplina.

METODOLOGIA DE AVALIAÇÃO

O desempenho dos estudantes será avaliado pelos seguintes itens:

- Realização das tarefas assíncronas (problemas), participação e presença nas atividades síncronas. As tarefas deverão ser anexadas no Moodle no item específico para cada atividade.
- 2) Resolução de um exercício individual utilizando softwares para o cálculo de propriedades termodinâmicas.
- 3) Realização de seminário em equipe (duplas) versando sobre o cálculo de equilíbrio de fases de misturas.
- 4) Recuperação: prova oral

O peso atribuído para cada item de avaliação seguirá a seguinte proporção:

- Tarefas Assíncronas (TA) = 30%
- Problema Individual (PI) = 30%
- Seminário (S) = 40% (20% = Apresentação escrita; 20% = Apresentação oral)

A nota final será definida pelo seguinte cálculo:

Nota Média Final: NMF = $(0.30 \cdot TA + 0.30 \cdot PI + 0.40 \cdot S)$

Se NMF \geq 5,75 \rightarrow Aprovado sem REC

Se NMF $< 5,75 \rightarrow REC$

Se NMF $< 3,00 \rightarrow Reprovado$

REC (Avaliação de Recuperação):

Se (NMF + REC)/2 \geq 5,75 \rightarrow Aprovado Se (NMF + REC)/2 < 5,75 \rightarrow Reprovado

a) Seminários: temas e critérios de avaliação:

- Grupos: 2 alunos por grupo;
- Abordagem: Calcular o ELV de misturas binárias utilizando equações de estado (por ex.: Peng-Robinson) implementadas em software livre.
 - Pesquisar artigos com dados experimentais de ELV;
 - Utilizar softwares para os cálculos;
 - Elaborar apresentação visual (por ex.: *Power Point*) com visão crítica dos resultados;
 - Apresentar seminários (arguição).
- Critérios de avaliação:

Apresentação oral (desenvoltura/conhecimento/análise crítica);

Apresentação escrita (conteúdo, conceitos, slides);

OBS: As apresentações e artigos devem ser anexadas, obrigatoriamente, na área do Moodle específica para a tarefa. É **OBRIGATÓRIO** anexar o arquivo eletrônico da apresentação e o artigo antes do seminário. O nome dos arquivos a serem enviados devem obedecer a seguinte formatação:

Apresentação: nomedoaluno1_nomedoaluno2_nomedoaluno3.xxx (ex.:

André_Adriana_Raffaella.pptx)

Artigo: sobrenome_do_primeiro_autor et al. ano.pdf (ex.: Lanza et al. 2020.pdf)

BIBLIOGRAFIA BÁSICA

Todo material utilizado, como apresentações, slides, vídeos, referências, entre outros, deverá ser disponibilizado para os alunos por meio da plataforma Moodle.

[1] YouThermo:

https://www.youtube.com/channel/UCYNDgYUJKT6JcSzAoMitTEA/videos

[2] David Vanden Bout:

https://www.youtube.com/user/utaustinchemistry/videos

[3] Chemical Engineering Guy

https://www.youtube.com/channel/UCJam6x5jrbVwDT9ql9KJ Iq

[4] Calculadora das tabelas de vapor:

https://www.steamtablesonline.com/steam97web.aspx?lang=pt

[5] DAHM and VISCO: Fundamentals of Chemical Engineering Thermodynamics

http://uomosul.edu.iq/public/files/datafolder 2896/ 20191116 015022 240.pdf

[6] Phase Equilibria Concepts

https://www.aiche.org/academy/webinars/phase-equilibria-concepts

[7] Chemical Engineering Thermodynamics NPTEL

https://nptel.ac.in/courses/103/101/103101004/

[8] LearnChemE - Thermodynamics

http://www.learncheme.com/screencasts/thermodynamics

[9] CHEMICAL ENGINEERING THERMODYNAMICS Andrew Rosen

https://sites.tufts.edu/andrewrosen/files/2018/10/thermo_review_v2-1.pdf

BIBLIOGRAFIA COMPLEMENTAR

[1] SMITH, J. M.; VAN NESS, H. C.(Hendrick C.); ABBOTT, Michael M. Introdução a termodinâmica da engenharia química. 7. ed. Rio de Janeiro (RJ): LTC, 2007. Número de Chamada: 66.021-97 S651i 7.ed. [2] SANDLER, Stanley I. Chemical and engineering thermodynamics. 3rd ed. New York: J. Wiley, 1999.

Número de Chamada: 66.021 97 S217c

- [3] MEIRELES, Maria Angela de Almeida; PEREIRA, Camila Gambini (Ed.). Fundamentos de engenharia de alimentos. São Paulo: Atheneu, 2013 xv, 815 p. (Coleção ciência, tecnologia, engenharia de alimentos e nutrição); v. 6. Número de chamada: 663/664 F981
- [4] REID, Robert C; PRAUSNITZ, J. M; POLING, Bruce E. The properties of gases and liquids. 4th ed. New York: McGraw-Hill, c1987. *Número de Chamada: 533.1 R357p*
- [5] PRAUSNITZ, J. M. Molecular thermodynamics of fluid-phase equilibria. Número de Chamada: 536.75 P918m
- [6] GÜÉMEZ, Julio; FIOLHAIS, Carlos; FIOLHAIS, Manuel. Fundamentos de termodinâmica do equilíbrio. Lisboa: Fundação Calouste Gulbenkian, 1998. Número de Chamada: 536.7 G933f
- [7] LEVENSPIEL, Octave. Termodinâmica amistosa para engenheiros. São Paulo: Edgard Blucher, 2002. Número de Chamada: 66.021-97 L657t
- [8] VAN WYLEN, Gordon John; SONNTAG, Richard Edwin; BORGNAKKE, Claus. Fundamentos da termodinâmica clássica. 5. ed. São Paulo: E. Blucher, 1998. : (broch.) Número de Chamada: 536.7 V217f

OBSERVAÇÕES	
Assinatura do Professor	Assinatura do Chefe do Departamento