

PLANO DE ENSINO - 2020/1

IDENTIFIC	CAÇÃO DA DISCIPLINA:			
CÓDIGO	NOME DA DISCIPLINA	TURMA	Nº DE HORAS-AULA SEMANAIS	TOTAL DE HORAS- AULA SEMESTRAIS
EQA5333	Operações Unitárias de Transferência de Calor e Massa	08216 08215	04	72

PROFESSOR(ES) MINISTRANTE(S)	CONTATO
Marco Di Luccio	di.luccio@ufsc.br
Alan Ambrosi	alan.ambrosi@ufsc.br
Bruno A. M. Carciofi	bruno.carciofi@ufsc.br

PRÉ-REQUISITO(S)	
CÓDIGO	NOME DA DISCIPLINA
EQA5416	Fenômenos de Transferência II

EQUIVALENTES	
ENQ1333 ou ENQ5333	

CURSO(S) PARA O(S) QUAL(IS) A DISCIPLINA É OFERECIDA ENGENHARIA QUÍMICA E ENGENHARIA DE ALIMENTOS

EMENTA

Operações unitárias da indústria química e de alimentos envolvendo fenômenos de transferência simultânea de calor e massa: destilação, absorção, extração, secagem.

OBJETIVOS

Apresentar as técnicas de dimensionamento dos principais equipamentos que envolvem transferência de calor e massa na indústria química e de alimentos.

CONTEÚDO PROGRAMÁTICO

- 1 Introdução: Introdução às operações unitárias da indústria química e de alimentos envolvendo fenômenos de transferência simultânea de calor e massa
- 2 Secagem: Comportamento geral dos sólidos na secagem. Propriedades do ar de secagem. Classes de materiais em função do comportamento na secagem. Movimento da umidade: mecanismo da difusão, mecanismo da capilaridade. Cálculo do tempo de secagem. Teor de umidade crítica. Período de taxa decrescente. Teor de umidade de equilíbrio. Mecanismos de transferência de calor na secagem. Aplicações ao projeto de equipamentos de secagem. Secadores de tabuleiro. Secadores rotativos. Secadores de tambor. Secagem por pulverização. Atomizadores. Secador pneumático. Secador em leito fluidizado. Secador em turbo-prateleira. Secagem sob congelação.
- 3 Destilação: Equilíbrio líquido-vapor. Vaporização parcial e condensação. Pressões parciais. Volatilidade relativa. Mistura de dois componentes. Coluna de destilação fracionada. Cálculo do número de pratos. Método de Lewis-Sorel. Método de McCabeThiele. Linhas de Operação. Razão de refluxo. Refluxo mínimo. Equações de Underwood e Fenske. Razão Econômica de Refluxo. Localização do prato de alimentação da coluna. Sistema não-ideais com vazão de vapor ascendente variável.

Uso dos diagramas entalpia-composição. Destilação em descontínuo. Misturas com múltiplas componentes. Destilação azeotrópica. Destilação extrativa. Destilação por arraste de vapor.

- 4. Extração sólido-líquido. Condições de equilíbrio. Processos em co-corrente e em contracorrente. Procedimentos de cálculo. Equipamentos para a extração sólidolíquido.
- 5 Extração Líquido-Líquido. Condições de equilíbrio. Uso de diagramas triangulares. Arranjos em co-corrente e em contracorrente com solventes imiscíveis. Processo em contracorrente por estágios com solventes parcialmente miscíveis. Extração contínua em colunas. Coeficientes de transferência e unidades de transferência. Equipamento de contato diferencial.
- 6 Absorção: Equilíbrio gás-líquido. Mecanismo da absorção. Teoria dos dois filmes. Difusão através de um gás ou líquido estagnado. Velocidade de absorção. Coeficientes de transferência. Valores de coeficientes de transferência em colunas de parede molhada, torres de pulverização, torres com enchimento e colunas de pratos. Absorção com reação química. Efeito do calor de absorção. Mecanismos de transferência de massa em absorção.

A I -	Conteúdo	
Aula		
05/mar	Apresentação da disciplina (Marco)	
10/mar	Secagem (Bruno)	
12/mar	Secagem (Bruno)	
	Extração (Alan)	
01/set	Introdução à ESL e à ELL	
	Fundamentos, fatores, métodos e classificação dos processos de ESL	
03/set	Extração (Alan)	
03/300	Projeto de processos de ESL	
08/set	Extração (Alan)	
00/361	Projeto de processos de ESL	
10/set	Extração (Alan)	
10/361	Fundamentos, fatores dos processos ELL e Equilíbrio LL	
15/set	Extração (Alan)	
15/561	Projeto de processos de ELL	
	Extração (Alan)	
17/set	Projeto de processos de ELL	
	→ Atividade avaliativa (Seminário equipamentos)	
	Secagem (Bruno)	
22/	Revisão de conceitos gerais de secagem.	
22/set	Comportamento geral dos materiais na secagem e propriedades do ar de	
	secagem.	
	Secagem (Bruno)	
24/set	Comportamento geral dos materiais na secagem e propriedades do ar de	
	secagem.	
	Secagem (Bruno)	
29/set	Mecanismos de transferência de calor e de umidade na secagem.	
	→ Atividade avaliativa (Seminário equipamentos)	
	Secagem (Bruno)	
04.4	Mecanismos de transferência de calor e de umidade na secagem.	
01/out	Curva típica de secagem.	
	→ Atividade avaliativa (Seminário equipamentos)	
06/out	Secagem (Bruno)	

	Curva típica de secagem.
	Escolha e projeto de secadores: noções gerais.
	→ Atividade avaliativa (Seminário equipamentos)
08/out	Destilação (Marco)
08/001	Introdução, revisão de equilíbrio LV
13/out	Destilação (Marco)
13/001	Destilação em flash binário e multicomponente
	Destilação (Marco)
15/out	Método McCabe Thiele para cálculo de colunas de destilação: premissas e
	balanços de massa na coluna
	Destilação (Marco)
20/out	Método McCabe-Thiele: condições de carga da coluna, cálculo do número
	mínimo de estágios e razão de refluxo mínima
	Destilação (Marco)
22/out	Método McCabe-Thiele: número ideal de estágios, eficiência de prato,
	eficiência global e o número real de estágios
27/out	Destilação (Marco)
	Destilação em batelada
29/out	Destilação (Marco)
	Destilação em batelada Destilação (Marco)
03/nov	Estratégias para misturas multicomponente
	Absorção (Marco)
05/nov	Revisão de conceitos básicos sobre transferência de massa interfacial e
03/1101	coeficientes de transferência de massa
	Absorção (Marco)
10/nov	Projeto de torres de pratos. Torres com recheio – perda de carga e ponto de
,	inundação
	Absorção (Marco)
12/nov	Perda de carga e ponto de inundação em torres de recheio. Cálculo do
	diâmetro da torre.
17/nov	Absorção (Marco)
17/1100	Torres de recheio – vazão mínima de solvente
19/nov	Absorção (Marco)
13/110	Cálculo de altura de torres de recheio
24/nov	Absorção (Marco)
,	Cálculo de altura de torres de recheio
26/nov	Absorção (Marco)
-,	Cálculo de altura de torres de recheio
01/dez	Absorção (Marco)
	Exercícios
03/dez	Apresentações projeto final
08/dez	Apresentações projeto final
10/dez	Apresentações projeto final
15/dez	Apresentações projeto final
17/dez	Apresentações projeto final

METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

Sistema de comunicação

- Um AVEA (Ambiente Virtual de Ensino-Aprendizagem) será disponibilizado na plataforma Moodle. Nele, os alunos poderão ter acesso ao conteúdo da disciplina, enviar mensagens, participar de fóruns de discussão, além de realizar atividades avaliativas.

Atividades síncronas

- Serão realizadas em plataforma digital Google Meet e/ou Jitsi, com link disponibilizado previamente no Moodle.
- Aulas expositivas no formato "slide" e atividades em conjunto serão realizadas.
- Caso o aluno não tenha conseguido acessar a aula síncrona e esta tenha tido alguma atividade, a atividade ficará disponível no AVEA.

Atividades assíncronas

- Serão disponibilizadas no AVEA. As atividades têm o objetivo de estimular a participação constante do aluno e farão parte do sistema de avaliação do aluno.

Controle de frequência das atividades

- A presença nas atividades síncronas será computada pelo acesso online.

METODOLOGIA DE AVALIAÇÃO

A avaliação consistirá em atividades a serem realizadas de forma síncrona e assíncrona dentro de cada tema. As atividades incluem discussão e apresentação de estudos de caso, exemplos/exercícios, e elaboração e apresentação de um projeto. Para os alunos que não atingirem a média, de acordo com as normas da UFSC, será realizada prova de recuperação, com todo o conteúdo do semestre. Os critérios de avaliação são apresentados abaixo:

SECAGEM

Atividades - Peso 10%

EXTRAÇÃO

Atividades – Peso 10%

DESTILAÇÃO

Atividades - Peso 25%

ABSORÇÃO

Atividades - Peso 25%

PROJETO (Secagem, Extração) - Peso: 30 %

Entrega parte 1: 17/09/2020 Entrega parte 2: 22/10/2020 Entrega parte 3: 26/11/2020

Apresentação projeto final: 03/12 a 17/12/2020

PROVA DE RECUPERAÇÃO (Todo o conteúdo do semestre): 18/12/2020 (horário a combinar)

BIBLIOGRAFIA BÁSICA

EARLE, R. L. Unit operations in food processing. Oxford: Pergamon, 1966. 342p. Versão eletrônica em https://nzifst.org.nz/resources/unitoperations/index.htm

Todos os demais materiais necessários para o ensino-aprendizado, como notas das aulas e vídeos, serão disponibilizados no Moodle.

BIBLIOGRAFIA COMPLEMENTAR

- AZEVEDO, E. G. & ALVES, A. M. Engenharia de Processos de Separação. 3a. ed. IST Press, 2017. 794 p.
- FOUST, Alan S. (Alan Shivers). Princípios das operações unitárias. 2. ed. Rio de Janeiro: Guanabara Dois, 1982. 670p.
- GEANKOPLIS, Christie J. Transport processes and unit operations. 4th. ed. Upper Saddle River: Prentice Hall, c2003. 1026p.
- GOMIDE, Reynaldo. Manual de operações unitarias. 2. ed. São Paulo (SP): Ed. Autor, 1991. 187p.
- GRISKEY, Richard G. Transport phenomena and unit operations: a combined approach. Hoboken, N.J.: John Wiley, 2002. xi, 448 p.
- HENLEY, Ernest J; SEADER, J. D. Equilibrium-stage separation operations in chemical engineering. New York: J. Wiley, c1981. 742p.
- IBARZ, Albert; Barbosa-Canóvas, Gustavo V. Unit operations in food engineering. CRC Press, New York, 2003.
- KISTER, H. Z. Distillation Design. McGraw-Hill Inc., New York, 1992.
- MCCABE, Warren L.; SMITH, Julian C.; HARRIOTT, Peter. Unit operations of chemical engineering. 4th ed. New York: McGraw-Hill, c1985. 960p.
- SEADER, J. D; HENLEY, Ernest J; ROPER, D. Keith. Separation process principles: chemical and biochemical operations. 3rd ed. New York: J. Wiley, c2011. 821p.
- SHREVE, Randolph Norris; BRINK, Joseph A. Indústrias de processos químicos.4. ed. Rio de Janeiro: Guanabara Koogan, c1997. 717p.
- SINGH, R. P.; HELDMAN, DENNIS R. Introduction to food engineering. 4th. ed. Amsterdam: Elsevier, Burlington (USA): Academic Press, c2009.,841p..
- SMITH, J.M., VAN NESS, H.C., ABBOTT, M.M. Introdução à termodinâmica da Engenharia Química. 5ed. Rio de Janeiro, LTC, 2000.
- TADINI, C.; Telis, V.; Meirelles, A.; Pessoa Filho, P. Operações Unitárias na Indústria de Alimentos Vol. 2, 1ª edição, Editora LTC, 2017. 516p.
- TREYBAL, Robert Ewald. Mass-transfer operations. 3rd ed. New York: McGraw-Hill, c1980. 784p.
- WELTY, WICKS, WILSON & RORRER. Fundamentals of Momentum, Heat and Mass Transfer. 5th Edition, John Wiley & Sons, 2008.

OBSERVAÇÕES

O cronograma proposto pode sofrer alterações durante o decorrer da disciplina, mas os alunos serão previamente comunicados caso ocorra.

 Assinatura do Chefe do